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Introduction

• Disk lasers have low susceptibility to ther. aberrations
– ∇T || k
– Large round aperture ⇒ good mode fill
– Large surfaces available for cooling
– Configurations:

> Pass-through disk and active mirror

• Compact Active Mirror Laser (CAMIL): Disk laser  for ultra-high-average power
– Active mirror configuration 
– Large-size composite disk 
– Edge-pumping by close-coupled diodes
– Microchannel heat exchanger 
– Shows excellent scalability

• Development testing

– Uniform pump density

– Ultra-low optical distortions at operational heat load
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Pass-through configuration

Active mirror configuration
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Compact Active Mirror Laser (CAMIL)
• Diode-pumped disk laser in “active mirror” configuration

– Composite disk: Nd3+ or Yb3+ ion doped into YAG, GGG, or glass
– Eliminates thermal focusing 
– Edge-pumping for uniform gain

• Continuous & uniform cooling by microstructure heat exchanger 
• Optical figure maintained by attachment to a rigid “strong back”

Premise for 
good BQ
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J. Vetrovec, SPIE vol. 4630 (2002)
J. Vetrovec, US Pat. 6,625,193
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Comparisons of 
Selected Disk Laser Concepts
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Thin-Disk Laser (TDL)

Comp. Active Mirror Laser (CAMIL)

• up to ~500W* per disk
• Heat flux: kW/cm2 range 

10 cm

• Several kW* per disk
• Heat flux <50 W/cm2 typ

Disk Lasers for Inertial 
Confinement Fusion

• Single pulse operation

*) average laser power

10 mm

• Active mirror config.
• Liquid cooled
• Continuous operation

• Pass-though config.
• Gas cooled

• Several kW* per disk
• Heat flux: W/cm2 range
• Intermittent operation

Heat Capacity Laser (HCL)
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"Pressure Clamping" of the Disk  to Substrate 
Mitigates Thermally-Driven Distortions

• Optical flatness can be achieved with only modest pressures
• Stresses can be reduced with pre-forming
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J. Vetrovec, US Pat. 6,339,605
J. Vetrovec, SPIE vol. 4270 (2001)
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Model predictions for thermally loaded disk Data for seating of a "cold" disk

5 cm Ø x 2.5 mm thick glass disk
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Edge-Pumping Permits Efficient Operation

• Edge-pumping permits close-coupling diodes to the disk (ηtransport → 95%) 
• Pump light experiences TIR and is wave-guided between disk surfaces 
• Long absorption path (~ disk Ø) ⇒ can design for ~ 95% absorption

– Permits reduced doping & allows using dopants with low absorption cross-section
• Composite construction (doped + undoped media)

– Tapered profile & curved inlet surface can be used to concentrate pump power
– Undoped edge traps ASE rays and reduces feedback to parasitics

> Conducts heat away from the gain section
> Avoids transverse ∇T and associated phase-front distortion near disk edge

• Nearly 100% of pumped volume is available for power extraction
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Diode Placement & Divergence Are 
Exploited for Uniform Pumping

• Natural divergence of diodes leads to gradual reduction of beamlet intensity with distance
• Circular geometry causes the diode beamlets to overlap inside the disk and and their 

intensities to add up
• Beamlet superposition can be balanced by absorption to produce uniform pumping
• Both diode placement (orientation orientation and pointing) and divergence must be taken 

into consideration

Undoped Edge

Diode Array

Doped Disk

Divergent
Beamlets

Beamlet
Intensities

Add Up
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Examples of Uniform Pump Density in a Disk 
with a Hexadecagonal Diode Array

M. Bass et al., UCF-CREOL, communications

4 Sources2 Sources1 Source

Source 
(diode stack)

Perimeter of 
doped disk

16 Sources4 Sources2 Sources1 Source

Source 
(diode stack)

Perimeter of 
doped disk

16 Sources

J. Vetrovec et al., SPIE 4968-06

Variation
2% rms

8 sources4 sources
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Two Diode Bar Orientations
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• Fast axis divergence fortuitously meets 
a criterion for uniform gain

• …but…electrical & coolant connections 
are a challenge

Fast Axis || to Disk Surface Fast Axis ⊥ to Disk Surface

• Easy electrical & coolant connections
• …but…diode placement must be 

carefully planned

Laser Diode
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J. Vetrovec et al., proc. SSDLTR 2003
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Pump Architecture

Segment Architecture Computer Simulations of Absorbed Power
Absorption length = 3 cm

Diode divergence (θ1/e) = 4 deg
Individual beams diverge and overlap to 

generate a uniform intensity field
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Octagonal Yb:Glass Disk

Doped core 
billet cast

Undoped edge 
cast around the 
core forming a 
composite billet

Composite billet 
sliced into disks

Grind and polish Optical coatingDoped core 
billet cast

Undoped edge 
cast around the 
core forming a 
composite billet

Composite billet 
sliced into disks

Grind and polish Optical coating

Yb doped Q-98 Kigre's glass at 4% concentration by wt.

5 cm

5 x 10 x 0.25 cm disk
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µChannel Heat Exchanger 
for Uniform Cooling

• µChannel cooling can provide 
– Very high heat transfer coefficients (~10 W/cm2-deg is achievable)
– Uniform heat extraction over a large surface 
– Very low temperature variation over the surface (isothermal)

• Silicon substrate (single crystal)
– High thermal conductivity, stiff & lightweight 
– Front surface flat to <λ/20 rms free, <λ/10 rms mounted (@632 nm)
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Test Hardware

Diodes and heat exchanger installed Disk installed
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Setup for Interferometric Measurement 
of Disk Distortions

Band-pass filter

Zygo Beam

Heat Exchanger

Window

Diode Array

Turning Mirror 

IR video camera, 
near IR (~ 1µm)

Temperature 
Sensors

Removable 
Mirror 

Laser disk 

Test Cell
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Pump Uniformity 87.5% Achieved

Image data Filtered image data
Variation = 12.5% Variation = 11.8%

Variation = 13%Variation = 10%

Model prediction
for xL = 2 (orig. design)

Model prediction
for xL = 1.4 (test data)

Model prediction
for xL = 2 (improved design)

Variation = 4%
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Excellent Optical Quality 
in Thermally-Loaded Disk
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Test 471

Phase error < λLaser/10 rms (2 pass configuration)
(Heat load ~18 W/cm3)
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~30% EO Efficiency in Yb-Doped Disk

Electric 
Power
100%

Diode 
Waste 
Heat
50% Energy defect heating ~5%

Trapped fluorescence ~5% 

Laser 
Output
~30%

Fluorescence 
Loss
~10%

Coolant manifold

Laser Disk

Heat Exchanger

Diodes

Predicted energy balance for Yb-doped disk pumped by 975 nm diodes
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CAMIL Devices 
Can Be Simple and Robust

Tested 
Configuration

(1 module)

Diode Array 
for Edge 
Pumping

Composite 
Laser Disk

Microchannel
Heat 

Exchanger

• CAMIL can be used in oscillator and MOPA

• Axisymmetric layout for high compactness

• Multiple disks placed onto common substrate
– Simple design with low component count
– Stable alignment

J. Vetrovec, SPIE vol. 4968 (2003)
J. Vetrovec, US Pat. 6,603,793
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Summary

Composite laser disk

Microchannel heat exchanger

Diode array for edge pumping

Testing at up to 1 kW of diode power
Pump uniformity 87.5%

Phase error < λLaser/10 in 
steady state and ~90°C

Test module configuration 
traceable to full scale 

hardware
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Conclusion

• CAMIL is a very promising SSL concept for ultra-high average power lasers 
– Compact and lightweight systems
– Multiple industrial applications

> Material processing in manufacturing
> Nuclear D&D
> Rock drilling
> Laser propulsion
> Orbital transfer and debris removal

• Development testing project demonstrated
– Composite disk fabrication
– Edge pumping
– Microchannel heat exchanger
– Pressure clamping of disk to heat exchanger

• Future publications


